3.857 \(\int \frac{x^2}{a+b x^2+c x^4} \, dx\)

Optimal. Leaf size=150 \[ \frac{\sqrt{\sqrt{b^2-4 a c}+b} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b^2-4 a c}}-\frac{\sqrt{b-\sqrt{b^2-4 a c}} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b^2-4 a c}} \]

[Out]

-((Sqrt[b - Sqrt[b^2 - 4*a*c]]*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[
b^2 - 4*a*c])) + (Sqrt[b + Sqrt[b^2 - 4*a*c]]*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2
]*Sqrt[c]*Sqrt[b^2 - 4*a*c])

________________________________________________________________________________________

Rubi [A]  time = 0.10949, antiderivative size = 150, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {1130, 205} \[ \frac{\sqrt{\sqrt{b^2-4 a c}+b} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b^2-4 a c}}-\frac{\sqrt{b-\sqrt{b^2-4 a c}} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b^2-4 a c}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/(a + b*x^2 + c*x^4),x]

[Out]

-((Sqrt[b - Sqrt[b^2 - 4*a*c]]*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[
b^2 - 4*a*c])) + (Sqrt[b + Sqrt[b^2 - 4*a*c]]*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2
]*Sqrt[c]*Sqrt[b^2 - 4*a*c])

Rule 1130

Int[((d_.)*(x_))^(m_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[(
d^2*(b/q + 1))/2, Int[(d*x)^(m - 2)/(b/2 + q/2 + c*x^2), x], x] - Dist[(d^2*(b/q - 1))/2, Int[(d*x)^(m - 2)/(b
/2 - q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && GeQ[m, 2]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^2}{a+b x^2+c x^4} \, dx &=-\left (\frac{1}{2} \left (-1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx\right )+\frac{1}{2} \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx\\ &=-\frac{\sqrt{b-\sqrt{b^2-4 a c}} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b^2-4 a c}}+\frac{\sqrt{b+\sqrt{b^2-4 a c}} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b^2-4 a c}}\\ \end{align*}

Mathematica [A]  time = 0.0833702, size = 165, normalized size = 1.1 \[ \frac{\left (\sqrt{b^2-4 a c}-b\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{\sqrt{b^2-4 a c}+b} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} \sqrt{c} \sqrt{b^2-4 a c}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/(a + b*x^2 + c*x^4),x]

[Out]

((-b + Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b^2 -
 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[b + Sqrt[b^2 - 4*a*c]]*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b
^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b^2 - 4*a*c])

________________________________________________________________________________________

Maple [A]  time = 0.179, size = 208, normalized size = 1.4 \begin{align*} -{\frac{\sqrt{2}}{2}{\it Artanh} \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{\sqrt{2}b}{2}{\it Artanh} \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{\sqrt{2}}{2}\arctan \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{\sqrt{2}b}{2}\arctan \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(c*x^4+b*x^2+a),x)

[Out]

-1/2*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))+1/2/(-4*
a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)
)*b+1/2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))+1/2/(-4*
a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{c x^{4} + b x^{2} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

integrate(x^2/(c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Fricas [B]  time = 1.50843, size = 1206, normalized size = 8.04 \begin{align*} \frac{1}{2} \, \sqrt{\frac{1}{2}} \sqrt{-\frac{b + \frac{b^{2} c - 4 \, a c^{2}}{\sqrt{b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}} \log \left (\frac{\sqrt{\frac{1}{2}}{\left (b^{2} c - 4 \, a c^{2}\right )} \sqrt{-\frac{b + \frac{b^{2} c - 4 \, a c^{2}}{\sqrt{b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}}}{\sqrt{b^{2} c^{2} - 4 \, a c^{3}}} + x\right ) - \frac{1}{2} \, \sqrt{\frac{1}{2}} \sqrt{-\frac{b + \frac{b^{2} c - 4 \, a c^{2}}{\sqrt{b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}} \log \left (-\frac{\sqrt{\frac{1}{2}}{\left (b^{2} c - 4 \, a c^{2}\right )} \sqrt{-\frac{b + \frac{b^{2} c - 4 \, a c^{2}}{\sqrt{b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}}}{\sqrt{b^{2} c^{2} - 4 \, a c^{3}}} + x\right ) - \frac{1}{2} \, \sqrt{\frac{1}{2}} \sqrt{-\frac{b - \frac{b^{2} c - 4 \, a c^{2}}{\sqrt{b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}} \log \left (\frac{\sqrt{\frac{1}{2}}{\left (b^{2} c - 4 \, a c^{2}\right )} \sqrt{-\frac{b - \frac{b^{2} c - 4 \, a c^{2}}{\sqrt{b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}}}{\sqrt{b^{2} c^{2} - 4 \, a c^{3}}} + x\right ) + \frac{1}{2} \, \sqrt{\frac{1}{2}} \sqrt{-\frac{b - \frac{b^{2} c - 4 \, a c^{2}}{\sqrt{b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}} \log \left (-\frac{\sqrt{\frac{1}{2}}{\left (b^{2} c - 4 \, a c^{2}\right )} \sqrt{-\frac{b - \frac{b^{2} c - 4 \, a c^{2}}{\sqrt{b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}}}{\sqrt{b^{2} c^{2} - 4 \, a c^{3}}} + x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

1/2*sqrt(1/2)*sqrt(-(b + (b^2*c - 4*a*c^2)/sqrt(b^2*c^2 - 4*a*c^3))/(b^2*c - 4*a*c^2))*log(sqrt(1/2)*(b^2*c -
4*a*c^2)*sqrt(-(b + (b^2*c - 4*a*c^2)/sqrt(b^2*c^2 - 4*a*c^3))/(b^2*c - 4*a*c^2))/sqrt(b^2*c^2 - 4*a*c^3) + x)
 - 1/2*sqrt(1/2)*sqrt(-(b + (b^2*c - 4*a*c^2)/sqrt(b^2*c^2 - 4*a*c^3))/(b^2*c - 4*a*c^2))*log(-sqrt(1/2)*(b^2*
c - 4*a*c^2)*sqrt(-(b + (b^2*c - 4*a*c^2)/sqrt(b^2*c^2 - 4*a*c^3))/(b^2*c - 4*a*c^2))/sqrt(b^2*c^2 - 4*a*c^3)
+ x) - 1/2*sqrt(1/2)*sqrt(-(b - (b^2*c - 4*a*c^2)/sqrt(b^2*c^2 - 4*a*c^3))/(b^2*c - 4*a*c^2))*log(sqrt(1/2)*(b
^2*c - 4*a*c^2)*sqrt(-(b - (b^2*c - 4*a*c^2)/sqrt(b^2*c^2 - 4*a*c^3))/(b^2*c - 4*a*c^2))/sqrt(b^2*c^2 - 4*a*c^
3) + x) + 1/2*sqrt(1/2)*sqrt(-(b - (b^2*c - 4*a*c^2)/sqrt(b^2*c^2 - 4*a*c^3))/(b^2*c - 4*a*c^2))*log(-sqrt(1/2
)*(b^2*c - 4*a*c^2)*sqrt(-(b - (b^2*c - 4*a*c^2)/sqrt(b^2*c^2 - 4*a*c^3))/(b^2*c - 4*a*c^2))/sqrt(b^2*c^2 - 4*
a*c^3) + x)

________________________________________________________________________________________

Sympy [A]  time = 0.849726, size = 75, normalized size = 0.5 \begin{align*} \operatorname{RootSum}{\left (t^{4} \left (256 a^{2} c^{3} - 128 a b^{2} c^{2} + 16 b^{4} c\right ) + t^{2} \left (- 16 a b c + 4 b^{3}\right ) + a, \left ( t \mapsto t \log{\left (64 t^{3} a c^{2} - 16 t^{3} b^{2} c - 2 t b + x \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(c*x**4+b*x**2+a),x)

[Out]

RootSum(_t**4*(256*a**2*c**3 - 128*a*b**2*c**2 + 16*b**4*c) + _t**2*(-16*a*b*c + 4*b**3) + a, Lambda(_t, _t*lo
g(64*_t**3*a*c**2 - 16*_t**3*b**2*c - 2*_t*b + x)))

________________________________________________________________________________________

Giac [C]  time = 2.30385, size = 5350, normalized size = 35.67 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

1/2*(3*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cos(5/4*pi + 1/2*real_par
t(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sin(5/4*pi
+ 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - ((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4
)*sqrt(b^2 - 4*a*c)*b)*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sin(5/4*pi + 1/2*real_part(ar
csin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 - 9*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4
*a*c)*b)*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(
a*c)*b/(a*abs(c)))))^2*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcs
in(1/2*sqrt(a*c)*b/(a*abs(c))))) + 3*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c
)*b)*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)
*b/(a*abs(c)))))^3*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 9*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^
(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))
^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(
a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 3*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4
)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi
+ 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))
^2 - 3*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cos(5/4*pi + 1/2*real_par
t(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(
1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 + ((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4
)*sqrt(b^2 - 4*a*c)*b)*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sinh(1/2*imag_part(ar
csin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3)*arctan(-((a/c)^(1/4)*cos(5/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))
) - x)/((a/c)^(1/4)*sin(5/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))/(a*b^2*c^3 - 4*a^2*c^4) + 1/2*(3*((
a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cos(1/4*pi + 1/2*real_part(arcsin(
1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sin(1/4*pi + 1/2*rea
l_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - ((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^
2 - 4*a*c)*b)*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sin(1/4*pi + 1/2*real_part(arcsin(1/2*
sqrt(a*c)*b/(a*abs(c)))))^3 - 9*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*
cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a
*abs(c)))))^2*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sq
rt(a*c)*b/(a*abs(c))))) + 3*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cosh
(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs
(c)))))^3*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 9*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c
 + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*cosh(1
/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))
)))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 3*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (
a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi + 1/2*rea
l_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 3*((
a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cos(1/4*pi + 1/2*real_part(arcsin(
1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_
part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 + ((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^
2 - 4*a*c)*b)*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sinh(1/2*imag_part(arcsin(1/2*
sqrt(a*c)*b/(a*abs(c)))))^3)*arctan(-((a/c)^(1/4)*cos(1/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))) - x)/((
a/c)^(1/4)*sin(1/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))/(a*b^2*c^3 - 4*a^2*c^4) - 1/4*(((a*c^3)^(3/4
)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*
c)*b/(a*abs(c)))))^3*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 - 3*((a*c^3)^(3/4)*b^2 - 4*(a*c
^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)
))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)
*b/(a*abs(c)))))^2 - 3*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cos(5/4*p
i + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))
))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 9*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a
*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag
_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2
*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 3*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3
)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*cosh(1/2*imag_p
art(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 9*((a*c^3
)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cos(5/4*pi + 1/2*real_part(arcsin(1/2*s
qrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(ar
csin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - ((a*c^3)^(3/4
)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*
c)*b/(a*abs(c)))))^3*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3 + 3*((a*c^3)^(3/4)*b^2 - 4*(a*c
^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)
))))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)
*b/(a*abs(c)))))^3)*log(-2*x*(a/c)^(1/4)*cos(5/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))) + x^2 + sqrt(a/c
))/(a*b^2*c^3 - 4*a^2*c^4) - 1/4*(((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b
)*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/
(a*abs(c)))))^3 - 3*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cos(1/4*pi +
 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*
sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 3*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c
 + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*cosh(1
/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) +
9*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cos(1/4*pi + 1/2*real_part(arc
sin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sin(1/4*pi + 1/2*r
eal_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + 3*((
a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cos(1/4*pi + 1/2*real_part(arcsin(
1/2*sqrt(a*c)*b/(a*abs(c)))))^3*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arc
sin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - 9*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*
a*c)*b)*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c
)*b/(a*abs(c)))))*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^2*sinh(1/2*imag_part(arcsin(
1/2*sqrt(a*c)*b/(a*abs(c)))))^2 - ((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b
)*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/
(a*abs(c)))))^3 + 3*((a*c^3)^(3/4)*b^2 - 4*(a*c^3)^(3/4)*a*c + (a*c^3)^(3/4)*sqrt(b^2 - 4*a*c)*b)*cos(1/4*pi +
 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c
)))))^2*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))^3)*log(-2*x*(a/c)^(1/4)*cos(1/4*pi + 1/2*arcsi
n(1/2*sqrt(a*c)*b/(a*abs(c)))) + x^2 + sqrt(a/c))/(a*b^2*c^3 - 4*a^2*c^4)